Immune-mediated inflammatory diseases (IMIDs) represent a diverse group of diseases and challenges remain for the current medications. Herein, we present an activatable and targeted nanosystem for detecting and imaging IMIDs foci and treating them through blocking NF-κB/NLRP3 pathways. A ROS-activatable prodrug BH-EGCG is synthesized by coupling a near-infrared chromophore with the NF-κB/NLRP3 inhibitor epigallocatechin-3-gallate (EGCG) through boronate bond which serves as both the fluorescence quencher and ROS-responsive moiety. BH-EGCG molecules readily form stable nanoparticles in aqueous medium, which are then coated with macrophage membrane to ensure the actively-targeting capability toward inflammation... More
Immune-mediated inflammatory diseases (IMIDs) represent a diverse group of diseases and challenges remain for the current medications. Herein, we present an activatable and targeted nanosystem for detecting and imaging IMIDs foci and treating them through blocking NF-κB/NLRP3 pathways. A ROS-activatable prodrug BH-EGCG is synthesized by coupling a near-infrared chromophore with the NF-κB/NLRP3 inhibitor epigallocatechin-3-gallate (EGCG) through boronate bond which serves as both the fluorescence quencher and ROS-responsive moiety. BH-EGCG molecules readily form stable nanoparticles in aqueous medium, which are then coated with macrophage membrane to ensure the actively-targeting capability toward inflammation sites. Additionally, an antioxidant precursor N-acetylcysteine is co-encapsulated into the coated nanoparticles to afford the nanosystem BH-EGCG&NAC@MM to further improve the anti-inflammatory efficacy. Benefiting from the inflammation-homing effect of the macrophage membrane, the nanosystem delivers payloads (diagnostic probe and therapeutic drugs) to inflammatory lesions more efficiently and releases a chromophore and two drugs upon being triggered by the overexpressed in-situ ROS, thus exhibiting better theranostic performance in the autoimmune hepatitis and hind paw edema mouse models, including more salient imaging signals and better therapeutic efficacy via inhibiting NF-κB pathway and suppressing NLRP3 inflammasome activation. This work may provide perceptions for designing other actively-targeting theranostic nanosystems for various inflammatory diseases.