Tissue engineering constructs are uniquely positioned not only for in vivo regenerative therapeutic applications but also to evaluate cellular responses to modifications in finely tuned three-dimensional (3-D) microenvironments as opposed to traditional two-dimensional (2-D) culture systems. However, moving into a 3-D system presents complications of assessing spatial and temporal alterations in cellular behavior (e.g., protein synthesis, motility, etc.). Here, we describe methods to evaluate spatial and temporal protein production in neural tissue engineering construct.
Tissue engineering constructs are uniquely positioned not only for in vivo regenerative therapeutic applications but also to evaluate cellular responses to modifications in finely tuned three-dimensional (3-D) microenvironments as opposed to traditional two-dimensional (2-D) culture systems. However, moving into a 3-D system presents complications of assessing spatial and temporal alterations in cellular behavior (e.g., protein synthesis, motility, etc.). Here, we describe methods to evaluate spatial and temporal protein production in neural tissue engineering construct.